Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Int J Mol Sci ; 24(3)2023 Feb 02.
Article in English | MEDLINE | ID: covidwho-2288086

ABSTRACT

In cancer diagnosis, diverse microRNAs (miRNAs) are used as biomarkers for carcinogenesis of distinctive human cancers. Thus, the detection of these miRNAs and their quantification are very important in prevention of cancer diseases in human beings. However, efficient RNA detection often requires RT-PCR, which is very complex for miRNAs. Recently, the development of CRISPR-based nucleic acid detection tools has brought new promises to efficient miRNA detection. Three CRISPR systems can be explored for miRNA detection, including type III, V, and VI, among which type III (CRISPR-Cas10) systems have a unique property as they recognize RNA directly and cleave DNA collaterally. In particular, a unique type III-A Csm system encoded by Lactobacillus delbrueckii subsp. bulgaricus (LdCsm) exhibits robust target RNA-activated DNase activity, which makes it a promising candidate for developing efficient miRNA diagnostic tools. Herein, LdCsm was tested for RNA detection using fluorescence-quenched DNA reporters. We found that the system is capable of specific detection of miR-155, a microRNA implicated in the carcinogenesis of human breast cancer. The RNA detection system was then improved by various approaches including assay conditions and modification of the 5'-repeat tag of LdCsm crRNAs. Due to its robustness, the resulting LdCsm detection platform has the potential to be further developed as a better point-of-care miRNA diagnostics relative to other CRISPR-based RNA detection tools.


Subject(s)
CRISPR-Associated Proteins , MicroRNAs , Humans , MicroRNAs/genetics , CRISPR-Cas Systems/genetics , CRISPR-Associated Proteins/genetics
2.
Molecules ; 27(20)2022 Oct 18.
Article in English | MEDLINE | ID: covidwho-2110187

ABSTRACT

Early and rapid diagnosis of pathogens is important for the prevention and control of epidemic disease. The polymerase chain reaction (PCR) technique requires expensive instrument control, a special test site, complex solution treatment steps and professional operation, which can limit its application in practice. The pathogen detection method based on the clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated protein (CRISPR/Cas) system is characterized by strong specificity, high sensitivity and convenience for detection, which is more suitable for practical applications. This article first reviews the CRISPR/Cas system, and then introduces the application of the two types of systems represented by Type II (cas9), Type V (cas12a, cas12b, cas14a) and Type VI (cas13a) in pathogen detection. Finally, challenges and prospects are proposed.


Subject(s)
CRISPR-Associated Proteins , CRISPR-Cas Systems , CRISPR-Cas Systems/genetics , Gene Editing/methods , Polymerase Chain Reaction , CRISPR-Associated Proteins/genetics
3.
J Med Virol ; 94(12): 5858-5866, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2013628

ABSTRACT

To rapidly identify individuals infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and control the spread of coronavirus disease (COVID-19), there is an urgent need for highly sensitive on-site virus detection methods. A clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas)-based molecular diagnostic method was developed for this purpose. Here, a CRISPR system-mediated lateral flow assay (LFA) for SARS-CoV-2 was established based on multienzyme isothermal rapid amplification, CRISPR-Cas13a nuclease, and LFA. To improve the limit of detection (LoD), the crispr RNA, amplification primer, and probe were screened, in addition to concentrations of various components in the reaction system. The LoD of CRISPR detection was improved to 0.25 copy/µl in both fluorescence- and immunochromatography-based assays. To enhance the quality control of the CRISPR-based LFA method, glyceraldehyde-3-phosphate dehydrogenase was detected as a reference using a triple-line strip design in a lateral flow strip. In total, 52 COVID-19-positive and 101 COVID-19-negative clinical samples examined by reverse transcription polymerase chain reaction (RT-PCR) were tested using the CRISPR immunochromatographic detection technique. Results revealed 100% consistency, indicating the comparable effectiveness of our method to that of RT-PCR. In conclusion, this approach significantly improves the sensitivity and reliability of CRISPR-mediated LFA and provides a crucial tool for on-site detection of SARS-CoV-2.


Subject(s)
COVID-19 , CRISPR-Associated Proteins , COVID-19/diagnosis , CRISPR-Associated Proteins/genetics , Humans , Nucleic Acid Amplification Techniques/methods , RNA , Reproducibility of Results , SARS-CoV-2/genetics , Sensitivity and Specificity
4.
Nat Biomed Eng ; 6(8): 925-927, 2022 08.
Article in English | MEDLINE | ID: covidwho-2000898
5.
Nucleic Acids Res ; 50(14): 8377-8391, 2022 08 12.
Article in English | MEDLINE | ID: covidwho-1937680

ABSTRACT

The RNA programmed non-specific (trans) nuclease activity of CRISPR-Cas Type V and VI systems has opened a new era in the field of nucleic acid-based detection. Here, we report on the enhancement of trans-cleavage activity of Cas12a enzymes using hairpin DNA sequences as FRET-based reporters. We discover faster rate of trans-cleavage activity of Cas12a due to its improved affinity (Km) for hairpin DNA structures, and provide mechanistic insights of our findings through Molecular Dynamics simulations. Using hairpin DNA probes we significantly enhance FRET-based signal transduction compared to the widely used linear single stranded DNA reporters. Our signal transduction enables faster detection of clinically relevant double stranded DNA targets with improved sensitivity and specificity either in the presence or in the absence of an upstream pre-amplification step.


Subject(s)
CRISPR-Associated Proteins , Bacterial Proteins/metabolism , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems , DNA/genetics , DNA Cleavage , DNA, Single-Stranded/genetics
6.
Proc Natl Acad Sci U S A ; 119(28): e2118260119, 2022 07 12.
Article in English | MEDLINE | ID: covidwho-1908380

ABSTRACT

Type VI CRISPR-Cas systems have been repurposed for various applications such as gene knockdown, viral interference, and diagnostics. However, the identification and characterization of thermophilic orthologs will expand and unlock the potential of diverse biotechnological applications. Herein, we identified and characterized a thermostable ortholog of the Cas13a family from the thermophilic organism Thermoclostridium caenicola (TccCas13a). We show that TccCas13a has a close phylogenetic relation to the HheCas13a ortholog from the thermophilic bacterium Herbinix hemicellulosilytica and shares several properties such as thermostability and inability to process its own pre-CRISPR RNA. We demonstrate that TccCas13a possesses robust cis and trans activities at a broad temperature range of 37 to 70 °C, compared with HheCas13a, which has a more limited range and lower activity. We harnessed TccCas13a thermostability to develop a sensitive, robust, rapid, and one-pot assay, named OPTIMA-dx, for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection. OPTIMA-dx exhibits no cross-reactivity with other viruses and a limit of detection of 10 copies/µL when using a synthetic SARS-CoV-2 genome. We used OPTIMA-dx for SARS-CoV-2 detection in clinical samples, and our assay showed 95% sensitivity and 100% specificity compared with qRT-PCR. Furthermore, we demonstrated that OPTIMA-dx is suitable for multiplexed detection and is compatible with the quick extraction protocol. OPTIMA-dx exhibits critical features that enable its use at point of care (POC). Therefore, we developed a mobile phone application to facilitate OPTIMA-dx data collection and sharing of patient sample results. This work demonstrates the power of CRISPR-Cas13 thermostable enzymes in enabling key applications in one-pot POC diagnostics and potentially in transcriptome engineering, editing, and therapies.


Subject(s)
Bacterial Proteins , COVID-19 , CRISPR-Associated Proteins , Clostridiales , Endodeoxyribonucleases , Point-of-Care Testing , SARS-CoV-2 , Bacterial Proteins/chemistry , Bacterial Proteins/classification , Bacterial Proteins/genetics , Biotechnology , COVID-19/diagnosis , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/classification , CRISPR-Associated Proteins/genetics , Clostridiales/enzymology , Endodeoxyribonucleases/chemistry , Endodeoxyribonucleases/classification , Endodeoxyribonucleases/genetics , Enzyme Stability , Hot Temperature , Humans , Phylogeny , SARS-CoV-2/isolation & purification
7.
Proc Natl Acad Sci U S A ; 119(26): e2202034119, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1900769

ABSTRACT

CRISPR diagnostics based on nucleic acid amplification faces barriers to its commercial use, such as contamination risks and insufficient sensitivity. Here, we propose a robust solution involving optochemical control of CRISPR RNA (crRNA) activation in CRISPR detection. Based on this strategy, recombinase polymerase amplification (RPA) and CRISPR-Cas12a detection systems can be integrated into a completely closed test tube. crRNA can be designed to be temporarily inactivated so that RPA is not affected by Cas12a cleavage. After the RPA reaction is completed, the CRISPR-Cas12a detection system is activated under rapid light irradiation. This photocontrolled, fully closed CRISPR diagnostic system avoids contamination risks and exhibits a more than two orders of magnitude improvement in sensitivity compared with the conventional one-pot assay. This photocontrolled CRISPR method was applied to the clinical detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA, achieving detection sensitivity and specificity comparable to those of PCR. Furthermore, a compact and automatic photocontrolled CRISPR detection device was constructed.


Subject(s)
Bacterial Proteins , CRISPR-Associated Proteins , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Endodeoxyribonucleases , Reagent Kits, Diagnostic , Reverse Transcriptase Polymerase Chain Reaction , COVID-19/diagnosis , Clustered Regularly Interspaced Short Palindromic Repeats/radiation effects , Humans , RNA/radiation effects , Recombinases/genetics , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/isolation & purification , Sensitivity and Specificity
8.
Nat Biomed Eng ; 6(8): 932-943, 2022 08.
Article in English | MEDLINE | ID: covidwho-1873504

ABSTRACT

The widespread transmission and evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) call for rapid nucleic acid diagnostics that are easy to use outside of centralized clinical laboratories. Here we report the development and performance benchmarking of Cas13-based nucleic acid assays leveraging lyophilised reagents and fast sample inactivation at ambient temperature. The assays, which we named SHINEv.2 (for 'streamlined highlighting of infections to navigate epidemics, version 2'), simplify the previously reported RNA-extraction-free SHINEv.1 technology by eliminating heating steps and the need for cold storage of the reagents. SHINEv.2 detected SARS-CoV-2 in nasopharyngeal samples with 90.5% sensitivity and 100% specificity (benchmarked against the reverse transcription quantitative polymerase chain reaction) in less than 90 min, using lateral-flow technology and incubation in a heat block at 37 °C. SHINEv.2 also allows for the visual discrimination of the Alpha, Beta, Gamma, Delta and Omicron SARS-CoV-2 variants, and can be run without performance losses by using body heat. Accurate, easy-to-use and equipment-free nucleic acid assays could facilitate wider testing for SARS-CoV-2 and other pathogens in point-of-care and at-home settings.


Subject(s)
COVID-19 , Nucleic Acids , COVID-19/diagnosis , COVID-19/virology , COVID-19 Testing , CRISPR-Associated Proteins , Humans , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
9.
Nucleic Acids Res ; 49(22): 13122-13134, 2021 12 16.
Article in English | MEDLINE | ID: covidwho-1555464

ABSTRACT

Type III CRISPR systems detect invading RNA, resulting in the activation of the enzymatic Cas10 subunit. The Cas10 cyclase domain generates cyclic oligoadenylate (cOA) second messenger molecules, activating a variety of effector nucleases that degrade nucleic acids to provide immunity. The prophage-encoded Vibrio metoecus type III-B (VmeCmr) locus is uncharacterised, lacks the HD nuclease domain in Cas10 and encodes a NucC DNA nuclease effector that is also found associated with Cyclic-oligonucleotide-based anti-phage signalling systems (CBASS). Here we demonstrate that VmeCmr is activated by target RNA binding, generating cyclic-triadenylate (cA3) to stimulate a robust NucC-mediated DNase activity. The specificity of VmeCmr is probed, revealing the importance of specific nucleotide positions in segment 1 of the RNA duplex and the protospacer flanking sequence (PFS). We harness this programmable system to demonstrate the potential for a highly specific and sensitive assay for detection of the SARS-CoV-2 virus RNA with a limit of detection (LoD) of 2 fM using a commercial plate reader without any extrinsic amplification step. The sensitivity is highly dependent on the guide RNA used, suggesting that target RNA secondary structure plays an important role that may also be relevant in vivo.


Subject(s)
CRISPR-Associated Proteins/genetics , CRISPR-Cas Systems/genetics , Endodeoxyribonucleases/metabolism , Endoribonucleases/metabolism , RNA, Viral/genetics , SARS-CoV-2/genetics , Animals , COVID-19 , Cell Line , Chlorocebus aethiops , Humans , Prophages/genetics , Vero Cells , Vibrio/virology
10.
Biosensors (Basel) ; 11(9)2021 Aug 28.
Article in English | MEDLINE | ID: covidwho-1374295

ABSTRACT

The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease-19 (COVID-19), has severely influenced public health and economics. For the detection of SARS-CoV-2, clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein (Cas)-based assays have been emerged because of their simplicity, sensitivity, specificity, and wide applicability. Herein, we have developed a CRISPR-Cas12-based assay for the detection of SARS-CoV-2. In the assay, the target amplicons are produced by isothermal reverse transcription recombinase polymerase amplification (RT-RPA) and recognized by a CRISPR-Cas12a/guide RNA (gRNA) complex that is coupled with the collateral cleavage activity of fluorophore-tagged probes, allowing either a fluorescent measurement or naked-eye detection on a lateral flow paper strip. This assay enables the sensitive detection of SARS-CoV-2 at a low concentration of 10 copies per sample. Moreover, the reliability of the method is verified by using nasal swabs and sputum of COVID-19 patients. We also proved that the current assay can be applied to other viruses, such as Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus (SARS-CoV), with no major changes to the basic scheme of testing. It is anticipated that the CRISPR-Cas12-based assay has the potential to serve as a point-of-care testing (POCT) tool for a wide range of infectious viruses.


Subject(s)
Bacterial Proteins/metabolism , CRISPR-Associated Proteins/metabolism , Endodeoxyribonucleases/metabolism , Middle East Respiratory Syndrome Coronavirus/isolation & purification , SARS-CoV-2/isolation & purification , Severe acute respiratory syndrome-related coronavirus/isolation & purification , Virus Diseases/diagnosis , CRISPR-Cas Systems , Fluorescent Dyes/chemistry , Humans , Middle East Respiratory Syndrome Coronavirus/genetics , Nose/virology , Point-of-Care Testing , RNA, Guide, Kinetoplastida/chemistry , RNA, Guide, Kinetoplastida/genetics , Reverse Transcriptase Polymerase Chain Reaction , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity , Sputum/virology
11.
Nat Commun ; 12(1): 5033, 2021 08 19.
Article in English | MEDLINE | ID: covidwho-1366816

ABSTRACT

Characteristic properties of type III CRISPR-Cas systems include recognition of target RNA and the subsequent induction of a multifaceted immune response. This involves sequence-specific cleavage of the target RNA and production of cyclic oligoadenylate (cOA) molecules. Here we report that an exposed seed region at the 3' end of the crRNA is essential for target RNA binding and cleavage, whereas cOA production requires base pairing at the 5' end of the crRNA. Moreover, we uncover that the variation in the size and composition of type III complexes within a single host results in variable seed regions. This may prevent escape by invading genetic elements, while controlling cOA production tightly to prevent unnecessary damage to the host. Lastly, we use these findings to develop a new diagnostic tool, SCOPE, for the specific detection of SARS-CoV-2 from human nasal swab samples, revealing sensitivities in the atto-molar range.


Subject(s)
Adenine Nucleotides/chemistry , COVID-19/diagnosis , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems , Oligoribonucleotides/chemistry , RNA, Bacterial/genetics , Ribonucleases/metabolism , SARS-CoV-2/genetics , COVID-19/genetics , COVID-19/metabolism , COVID-19/virology , Diagnostic Tests, Routine/methods , Humans , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity
12.
PLoS One ; 16(7): e0254815, 2021.
Article in English | MEDLINE | ID: covidwho-1318322

ABSTRACT

African swine fever (ASF) is a serious contagious disease that causes fatal haemorrhagic fever in domestic and wild pigs, with high morbidity. It has caused devastating damage to the swine industry worldwide, necessitating the focus of attention on detection of the ASF pathogen, the African swine fever virus (ASFV). In order to overcome the disadvantages of conventional diagnostic methods (e.g. time-consuming, demanding and unintuitive), quick detection tools with higher sensitivity need to be explored. In this study, based on the conserved p72 gene sequence of ASFV, we combined the Cas12a-based assay with recombinase polymerase amplification (RPA) and a fluorophore-quencher (FQ)-labeled reporter assay for rapid and visible detection. Five crRNAs designed for Cas12a-based assay showed specificity with remarkable fluorescence intensity under visual inspection. Within 20 minutes, with an initial concentration of two copies of DNA, the assay can produce significant differences between experimental and negative groups, indicating the high sensitivity and rapidity of the method. Overall, the developed RPA-Cas12a-fluorescence assay provides a fast and visible tool for point-of-care ASFV detection with high sensitivity and specificity, which can be rapidly performed on-site under isothermal conditions, promising better control and prevention of ASF.


Subject(s)
African Swine Fever Virus/isolation & purification , African Swine Fever/diagnosis , Bacterial Proteins/genetics , CRISPR-Associated Proteins/genetics , Endodeoxyribonucleases/genetics , Swine Diseases/diagnosis , African Swine Fever/genetics , African Swine Fever/virology , African Swine Fever Virus/genetics , Animals , Bacterial Proteins/chemistry , CRISPR-Associated Proteins/chemistry , CRISPR-Cas Systems , DNA-Directed DNA Polymerase/chemistry , Endodeoxyribonucleases/chemistry , Molecular Diagnostic Techniques , Point-of-Care Systems , Recombinases/chemistry , Swine , Swine Diseases/genetics , Swine Diseases/pathology , Swine Diseases/virology
13.
Drug Discov Today ; 26(8): 2025-2035, 2021 08.
Article in English | MEDLINE | ID: covidwho-1275263

ABSTRACT

The limitations of conventional diagnostic procedures, such as real-time PCR-based methods and serological tests, have led the scientific community to innovate alternative nucleic acid detection approaches for SARS-CoV-2 RNA, thereby addressing the dire need for increased testing. Such approaches aim to provide rapid, accurate, cost-effective, sensitive, and high-throughput detection of SARS-CoV-2 RNA, on multiple specimen types, and without specialized equipment and expertise. The CRISPR-Cas13 system functions as a sequence-specific RNA-sensing tool that has recently been harnessed to develop simplified and flexible testing formats. This review recapitulates technical advances in the most recent CRISPR-Cas13-based methods for SARS-CoV-2/COVID-19 diagnosis. The challenges and opportunities for implementing mass testing using these novel CRISPR-Cas13 platforms are critically analyzed.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19 , CRISPR-Cas Systems/physiology , RNA, Viral/isolation & purification , SARS-CoV-2/isolation & purification , COVID-19/diagnosis , COVID-19/virology , CRISPR-Associated Proteins , Humans , Point-of-Care Testing/trends , RNA Cleavage
14.
Nat Commun ; 12(1): 1739, 2021 03 19.
Article in English | MEDLINE | ID: covidwho-1142438

ABSTRACT

Extensive testing is essential to break the transmission of SARS-CoV-2, which causes the ongoing COVID-19 pandemic. Here, we present a CRISPR-based diagnostic assay that is robust to viral genome mutations and temperature, produces results fast, can be applied directly on nasopharyngeal (NP) specimens without RNA purification, and incorporates a human internal control within the same reaction. Specifically, we show that the use of an engineered AsCas12a enzyme enables detection of wildtype and mutated SARS-CoV-2 and allows us to perform the detection step with loop-mediated isothermal amplification (LAMP) at 60-65 °C. We also find that the use of hybrid DNA-RNA guides increases the rate of reaction, enabling our test to be completed within 30 minutes. Utilizing clinical samples from 72 patients with COVID-19 infection and 57 healthy individuals, we demonstrate that our test exhibits a specificity and positive predictive value of 100% with a sensitivity of 50 and 1000 copies per reaction (or 2 and 40 copies per microliter) for purified RNA samples and unpurified NP specimens respectively.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , RNA, Guide, Kinetoplastida , SARS-CoV-2/genetics , Bacterial Proteins/genetics , COVID-19/virology , CRISPR-Associated Proteins/genetics , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Endodeoxyribonucleases/genetics , Humans , Molecular Diagnostic Techniques/methods , Mutation , Nasopharynx/virology , Nucleic Acid Amplification Techniques/methods , RNA, Viral/genetics , Sensitivity and Specificity
15.
ACS Sens ; 6(3): 1086-1093, 2021 03 26.
Article in English | MEDLINE | ID: covidwho-1120724

ABSTRACT

The outbreak of COVID-19 caused a worldwide public health crisis. Large-scale population screening is an effective means to control the spread of COVID-19. Reverse transcription-polymerase chain reaction (RT-qPCR) and serology assays are the most available techniques for SARS-CoV-2 detection; however, they suffer from either less sensitivity and accuracy or low instrument accessibility for screening. To balance the sensitivity, specificity, and test availability, here, we developed enhanced colorimetry, which is termed as a magnetic pull-down-assisted colorimetric method based on the CRISPR/Cas12a system (M-CDC), for SARS-CoV-2 detection. By this method, SARS-CoV-2 RNA from synthetic sequences and cultured viruses can be detected by the naked eye based on gold nanoparticle (AuNP) probes, with a detection limit of 50 RNA copies per reaction. With CRISPR/Cas12a-assisted detection, SARS-CoV-2 can be specifically distinguished from other closely related viruses. M-CDC was further used to analyze 41 clinical samples, whose performance was 95.12%, consistent with that of an approved Clinical RT-qPCR Diagnosis kit. The developed M-CDC method is not dependent on sophisticated instruments, which makes it potentially valuable to be applied for SARS-CoV-2 screening under poor conditions.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , RNA, Viral/analysis , SARS-CoV-2/genetics , Bacterial Proteins , CRISPR-Associated Proteins , CRISPR-Cas Systems , Cell Line, Tumor , Colorimetry , DNA/chemistry , DNA Probes , Endodeoxyribonucleases , Gold/chemistry , Humans , Metal Nanoparticles/chemistry
16.
ACS Sens ; 6(3): 881-888, 2021 03 26.
Article in English | MEDLINE | ID: covidwho-1108884

ABSTRACT

Coronavirus Disease 2019 (COVID-19), which is caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), has rapidly spread leading to a global pandemic. Here, we combined multiple cross displacement amplification (MCDA) with CRISPR-Cas12a-based detection to develop a novel diagnostic test (MCCD) and applied for the diagnosis of COVID-19, called COVID-19 MCCD. The MCCD protocol conducts reverse transcription MCDA (RT-MCDA) reaction for RNA templates followed by CRISPR-Cas12a/CrRNA complex detection of predefined target sequences after which degradation of a single-strand DNA (ssDNA) molecule confirms detection of the target sequence. Two MCDA primer sets and two CrRNAs were designed targeting the opening reading frame 1a/b (ORF1ab) and nucleoprotein (N) of SARS-CoV-2. The optimal conditions include two RT-MCDA reactions at 63 °C for 35 min and a CRISPR-Cas12a/CrRNA detection reaction at 37 °C for 5 min. The COVID-19 MCCD assay can be visualized on a lateral flow biosensor (LFB) and completed within 1 h including RNA extraction (15 min), RT-MCDA reaction (35 min), CRISPR-Cas12a/CrRNA detection reaction (5 min), and reporting of result (within 2 min). The COVID-19 MCCD assay is very sensitive and detects the target gene with as low as seven copies per test and does not cross-react with non-SARS-CoV-2 templates. SARS-CoV-2 was detected in 37 of 37 COVID-19 patient samples, and nonpositive results were detected from 77 non-COVID-19 patients. Therefore, the COVID-19 MCCD assay is a useful tool for the reliable and quick diagnosis of SARS-CoV-2 infection.


Subject(s)
Bacterial Proteins , COVID-19 Testing , COVID-19/diagnosis , CRISPR-Associated Proteins , CRISPR-Cas Systems , Endodeoxyribonucleases , Nucleic Acid Amplification Techniques , RNA, Viral , SARS-CoV-2/genetics , Biosensing Techniques , Humans , Sensitivity and Specificity
17.
Eur Rev Med Pharmacol Sci ; 25(3): 1752-1761, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1102762

ABSTRACT

The CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 (CRISPR-associated protein 9) system enables scientists to edit diverse genome types with relative ease, with the aim - in the near future - to prevent future human beings from developing genetic diseases. The new opportunities arising from the system are broad-ranging and revolutionary, but such prospects have also been the cause for alarm throughout the international scientific community. The authors have laid out a review of the trials carried out so far in terms of genome editing, for the ultimate purpose of weighing implications and criticisms. We feel that possible valuable alternatives, such as induced pluripotent stem cells should not be overlooked.


Subject(s)
COVID-19 , CRISPR-Associated Proteins/genetics , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , SARS-CoV-2/isolation & purification , COVID-19/therapy , COVID-19/virology , CRISPR-Associated Protein 9/genetics , Gene Editing , Genetic Therapy , Humans , SARS-CoV-2/genetics
18.
ACS Chem Biol ; 16(3): 491-500, 2021 03 19.
Article in English | MEDLINE | ID: covidwho-1084488

ABSTRACT

The outbreak of novel coronavirus SARS-CoV-2 has caused a worldwide threat to public health. COVID-19 patients with SARS-CoV-2 infection can develop clinical symptoms that are often confused with the infections of other respiratory pathogens. Sensitive and specific detection of SARS-CoV-2 with the ability to discriminate from other viruses is urgently needed for COVID-19 diagnosis. Herein, we streamlined a highly efficient CRISPR-Cas12a-based nucleic acid detection platform, termed Cas12a-linked beam unlocking reaction (CALIBURN). We show that CALIBURN could detect SARS-CoV-2 and other coronaviruses and influenza viruses with little cross-reactivity. Importantly, CALIBURN allowed accurate diagnosis of clinical samples with extremely low viral loads, which is a major obstacle for the clinical applications of existing CRISPR diagnostic platforms. When tested on the specimens from SARS-CoV-2-positive and negative donors, CALIBURN exhibited 73.0% positive and 19.0% presumptive positive rates and 100% specificity. Moreover, unlike existing CRISPR detection methods that were mainly restricted to respiratory specimens, CALIBURN displayed consistent performance across both respiratory and nonrespiratory specimens, suggesting its broad specimen compatibility. Finally, using a mouse model of SARS-CoV-2 infection, we demonstrated that CALIBURN allowed detection of coexisting pathogens without cross-reactivity from a single tissue specimen. Our results suggest that CALIBURN can serve as a versatile platform for the diagnosis of COVID-19 and other respiratory infectious diseases.


Subject(s)
Bacterial Proteins/genetics , COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , CRISPR-Associated Proteins/genetics , CRISPR-Cas Systems , Endodeoxyribonucleases/genetics , RNA, Viral/analysis , SARS-CoV-2/chemistry , Adenoviridae/chemistry , Animals , COVID-19/genetics , Fluorescent Dyes/chemistry , Humans , Limit of Detection , Mice, Inbred BALB C , Nucleic Acid Amplification Techniques , RNA Probes/genetics , RNA, Viral/genetics , Specimen Handling , Spectrometry, Fluorescence
19.
Anal Chem ; 93(8): 4126-4133, 2021 03 02.
Article in English | MEDLINE | ID: covidwho-1078274

ABSTRACT

The outbreak of the pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) calls for an urgent unmet need for developing a facial and cost-effective detection method. The requirement of well-trained personnel and sophisticated instrument of current primary mean (reverse transcription polymerase chain reaction, RT-PCR) may hinder the practical application worldwide. In this regard, a reverse transcription recombinase polymerase amplification (RT-RPA) coupled with CRISPR-Cas12a colorimetric assay is proposed for the SARS-CoV-2 detection. The methodology we have described herein utilizes DNA-modified gold nanoparticles (AuNPs) as a universal colorimetric readout and can specifically target ORF1ab and N regions of the SARS-CoV-2 genome. After the virus genome is amplified through RT-RPA, the resulting abundant dsDNA will bind and activate Cas12a. Under trans-cleavage degradation, the capped DNA substrate will be hydrolyzed gradually from AuNPs, demonstrating a change in the surface plasmon resonance (SPR), which can be facially monitored by UV-vis absorbance spectroscopy and naked eye observation. The high amplification efficiency from RT-RPA and Cas12a trans-cleavage process bring the sensitivity of our method to 1 copy of viral genome sequence per test. Notably, under the dual variations inspecting from the isothermal amplification and Cas12a activation process, the false positive events from other beta coronavirus members can be effectively avoided and thus significantly improve the specificity. Furthermore, the reliability of this colorimetric assay is validated by standard clinical samples from the hospital laboratory department. Through integration of the inherently high sensitivity and specificity from an RPA-coupled Cas12a system with the intrinsic simplicity of AuNP-based colorimetric assay, our method increases the practical testing availability of SARS-CoV-2.


Subject(s)
CRISPR-Cas Systems , Colorimetry/methods , DNA/chemistry , Nucleic Acid Amplification Techniques/methods , RNA, Viral/analysis , SARS-CoV-2/isolation & purification , Bacterial Proteins , Base Sequence , COVID-19/diagnosis , CRISPR-Associated Proteins , Coronavirus Nucleocapsid Proteins/genetics , DNA/genetics , Endodeoxyribonucleases , Gold/chemistry , Humans , Metal Nanoparticles/chemistry , Phosphoproteins/genetics , Polyproteins/genetics , RNA, Viral/genetics , Reverse Transcription , SARS-CoV-2/chemistry , Surface Plasmon Resonance , Viral Proteins/genetics
20.
J Virol Methods ; 290: 114092, 2021 04.
Article in English | MEDLINE | ID: covidwho-1057006

ABSTRACT

COVID-19 pandemic caused by SARS-CoV-2 infection continue to cause the morbidity and mortality in many countries. Limitations of the gold standard qRT-PCR for diagnosis of this infection includes need for expensive equipment, specialized molecular laboratory, and experienced staff. Currently, CRISPR-based diagnostic method was approved by the U.S. FDA for rapid detection. Several studies developed SARS-CoV-2 detection based on CRISPR-Cas12a platform; however, the validations with RNA extracted from clinical specimens were limited. Therefore, this study evaluated the clinical performance of previously described CRISPR-Cas12a based diagnostic assays for SARS-CoV-2. According to the results, the CRISPR-Cas12a assays on N1 and S genes provided diagnostic accuracy (≥ 95 %) comparable to the qRT-PCR results. The assays with E, N2 and S genes yielded acceptable sensitivity of detection (≥ 95 %) whereas N1 and S genes provided outstanding specificity of detection (100 %). Preferably, multiple target genes should be detected by using CRISPR-Cas12a to ensure the most effective SARS-CoV-2 detection. Therefore, the N1 and S genes would be attractive target genes for SARS-CoV-2 detection based on CRISPR-Cas12a.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , CRISPR-Cas Systems , SARS-CoV-2/isolation & purification , Bacterial Proteins , COVID-19 Nucleic Acid Testing/standards , CRISPR-Associated Proteins , Clustered Regularly Interspaced Short Palindromic Repeats , Endodeoxyribonucleases , Humans , Nucleic Acid Amplification Techniques , RNA, Viral/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL